Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 15446, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36104446

RESUMO

The liver is among the few organs having the ability to self-regenerate in response to a severe damage compromising its functionality. The Aryl hydrocarbon receptor (Ahr) is a transcription factor relevant for the detoxification of xenobiotics but also largely important for liver development and homeostasis. Hence, liver cell differentiation is developmentally modulated by Ahr through the controlled expression of pluripotency and stemness-inducing genes. Here, 2/3 partial hepatectomy (PH) was used as a clinically relevant approach to induce liver regeneration in Ahr-expressing (Ahr+/+) and Ahr-null (Ahr-/-) mice. Ahr expression and activity were early induced after 2/3 PH to be gradually downmodulated latter during regeneration. Ahr-/- mice triggered liver regeneration much faster than AhR+/+ animals, although both reached full regeneration at the latest times. At initial stages after PHx, earlier regenerating Ahr-/- livers had upregulation of cell proliferation markers and increased activation of signalling pathways related to stemness such as Hippo-YAP and Wnt/ß-catenin, concomitantly with the induction of pro-inflammatory cytokines TNFa, IL6 and p65. These phenotypes, together with the improved metabolic adaptation of Ahr-/- mice after PHx and their induced sustained cell proliferation, could likely result from the expansion of undifferentiated stem cells residing in the liver expressing OCT4, SOX2, KLF4 and NANOG. We propose that Ahr needs to be induced early during regeneration to fine-tune liver regrowth to physiological values. Since Ahr deficiency did not result in liver overgrowth, its transient pharmacological inhibition could serve to improve liver regeneration in hepatectomized and transplanted patients and in those exposed to damaging liver toxins and carcinogens.


Assuntos
Regeneração Hepática , Receptores de Hidrocarboneto Arílico , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Diferenciação Celular , Hepatectomia , Fígado/metabolismo , Fígado/cirurgia , Camundongos , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo
2.
Aging (Albany NY) ; 14(10): 4281-4304, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35619220

RESUMO

Aging impairs organismal homeostasis leading to multiple pathologies. Yet, the mechanisms and molecular intermediates involved are largely unknown. Here, we report that aged aryl hydrocarbon receptor-null mice (AhR-/-) had exacerbated cellular senescence and more liver progenitor cells. Senescence-associated markers ß-galactosidase (SA-ß-Gal), p16Ink4a and p21Cip1 and genes encoding senescence-associated secretory phenotype (SASP) factors TNF and IL1 were overexpressed in aged AhR-/- livers. Chromatin immunoprecipitation showed that AhR binding to those gene promoters repressed their expression, thus adjusting physiological levels in AhR+/+ livers. MCP-2, MMP12 and FGF secreted by senescent cells were overproduced in aged AhR-null livers. Supporting the relationship between senescence and stemness, liver progenitor cells were overrepresented in AhR-/- mice, probably contributing to increased hepatocarcinoma burden. These AhR roles are not liver-specific since adult and embryonic AhR-null fibroblasts underwent senescence in culture, overexpressing SA-ß-Gal, p16Ink4a and p21Cip1. Notably, depletion of senescent cells with the senolytic agent navitoclax restored expression of senescent markers in AhR-/- fibroblasts, whereas senescence induction by palbociclib induced an AhR-null-like phenotype in AhR+/+ fibroblasts. AhR levels were downregulated by senescence in mouse lungs but restored upon depletion of p16Ink4a-expressing senescent cells. Thus, AhR restricts age-induced senescence associated to a differentiated phenotype eventually inducing resistance to liver tumorigenesis.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina , Receptores de Hidrocarboneto Arílico , Envelhecimento/metabolismo , Animais , Senescência Celular/fisiologia , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Fibroblastos/metabolismo , Fígado/metabolismo , Camundongos , Receptores de Hidrocarboneto Arílico/genética
3.
Front Cell Dev Biol ; 10: 884004, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35465323

RESUMO

Transcription factor aryl hydrocarbon receptor (AHR) has emerged as one of the main regulators involved both in different homeostatic cell functions and tumor progression. Being a member of the family of basic-helix-loop-helix (bHLH) transcriptional regulators, this intracellular receptor has become a key member in differentiation, pluripotency, chromatin dynamics and cell reprogramming processes, with plenty of new targets identified in the last decade. Besides this role in tissue homeostasis, one enthralling feature of AHR is its capacity of acting as an oncogene or tumor suppressor depending on the specific organ, tissue and cell type. Together with its well-known modulation of cell adhesion and migration in a cell-type specific manner in epithelial-mesenchymal transition (EMT), this duality has also contributed to the arise of its clinical interest, highlighting a new potential as therapeutic tool, diagnosis and prognosis marker. Therefore, a deregulation of AHR-controlled pathways may have a causal role in contributing to physiological and homeostatic failures, tumor progression and dissemination. With that firmly in mind, this review will address the remarkable capability of AHR to exert a different function influenced by the phenotype of the target cell and its potential consequences.

4.
Stem Cell Reports ; 16(9): 2351-2363, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34478649

RESUMO

Mammalian embryogenesis is a complex process controlled by transcription factors that regulate the balance between pluripotency and differentiation. Transcription factor aryl hydrocarbon receptor (AhR) regulates OCT4/POU5F1 and NANOG, both essential controllers of pluripotency, stemness and early embryo development. Molecular mechanisms controlling OCT4/POU5F1 and NANOG during embryogenesis remain unidentified. We show that AhR regulates pluripotency factors and maintains the metabolic activity required for proper embryo differentiation. AhR-lacking embryos (AhR-/-) showed a pluripotent phenotype characterized by a delayed expression of trophectoderm differentiation markers. Accordingly, central pluripotency factors OCT4/POU5F1 and NANOG were overexpressed in AhR-/- embryos at initial developmental stages. An altered intracellular localization of these factors was observed in the absence of AhR and, importantly, Oct4 had an opposite expression pattern with respect to AhR from the two-cell stage to blastocyst, suggesting a negative regulation of OCT4/POU5F by AhR. We propose that AhR is a regulator of pluripotency and differentiation in early mouse embryogenesis.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/genética , Desenvolvimento Embrionário/genética , Receptores de Hidrocarboneto Arílico/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Embrião de Mamíferos , Metabolismo Energético , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Genótipo , Glicólise , Via de Sinalização Hippo , Camundongos , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Estresse Oxidativo , Transporte Proteico , Receptores de Hidrocarboneto Arílico/metabolismo
5.
Cancers (Basel) ; 13(16)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34439225

RESUMO

Non-small cell lung adenocarcinoma (NSCLC) bearing K-RasG12D mutations is one of the most prevalent types of lung cancer worldwide. Aryl hydrocarbon receptor (AHR) expression varies in human lung tumors and has been associated with either increased or reduced lung metastasis. In the mouse, Ahr also adjusts lung regeneration upon injury by limiting the expansion of resident stem cells. Here, we show that the loss of Ahr enhances K-RasG12D-driven NSCLC in mice through the amplification of stem cell subpopulations. Consistent with this, we show that K-RasG12D;Ahr-/- lungs contain larger numbers of cells expressing markers for both progenitor Clara (SCGB1A1 and CC10) and alveolar type-II (SFTPC) cells when compared to K-RasG12D;Ahr+/+-driven tumors. They also have elevated numbers of cells positive for pluripotent stem cells markers such as SOX2, ALDH1, EPCAM, LGR5 and PORCN. Typical pluripotency genes Nanog, Sox2 and c-Myc were also upregulated in K-RasG12D;Ahr-/- lung tumors as found by RNAseq analysis. In line with this, purified K-RasG12D/+;Ahr-/- lung cells generate larger numbers of organoids in culture that can subsequently differentiate into bronchioalveolar structures enriched in both pluripotency and stemness genes. Collectively, these data indicate that Ahr antagonizes K-RasG12D-driven NSCLC by restricting the number of cancer-initiating stem cells. They also suggest that Ahr expression might represent a good prognostic marker to determine the progression of K-RasG12D-positive NSCLC patients.

6.
Stem Cell Res ; 25: 61-71, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29107893

RESUMO

Recent experimental evidences from cellular systems and from mammalian and non-mammalian animal models highlight novel functions for the aryl hydrocarbon/dioxin receptor (AhR) in maintaining cell differentiation and tissue homeostasis. Notably, AhR depletion stimulates an undifferentiated and pluripotent phenotype likely associated to a mesenchymal transition in epithelial cells and to increased primary tumorigenesis and metastasis in melanoma. In this work, we have used a lung model of epithelial regeneration to investigate whether AhR regulates proper tissue repair by adjusting the expansion of undifferentiated stem-like cells. AhR-null mice developed a faster and more efficient repair of the lung bronchiolar epithelium upon naphthalene injury that required increased cell proliferation and the earlier activation of stem-like Clara, Basal and neuroepithelial cells precursors. Increased basal content in multipotent Sca1+/CD31-/CD4- cells and in cells expressing pluripotency factors NANOG and OCT4 could also improve re-epithelialization in AhR-null lungs. The reduced response of AhR-deficient lungs to Sonic Hedgehog (Shh) repression shortly after injury may also help their improved bronchiolar epithelium repair. These results support a role for AhR in the regenerative response against toxins, and open the possibility of modulating its activation level to favor recovery from lesions caused by environmental contaminants.


Assuntos
Pulmão/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Pulmão/efeitos dos fármacos , Pulmão/fisiologia , Camundongos , Naftalenos/toxicidade , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Hidrocarboneto Arílico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...